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Abstract 

 

This paper develops computational tools for 

evaluating competing syllabic parses of a pho-

nological string on the basis of temporal pat-

terns in speech production data. This is done 

by constructing models linking syllable parses 

to patterns of coordination between articulato-

ry events. Data simulated from different syl-

labic parses are evaluated against experimental 

data from American English and Moroccan 

Arabic, two languages claimed to parse similar 

strings of segments into different syllabic 

structures. Results implicate a tautosyllabic 

parse of initial consonant clusters in English 

and a heterosyllabic parse of initial clusters in 

Arabic, in accordance with theoretical work on 

the syllable structure of these languages. It is 

further demonstrated that the model can cor-

rectly diagnose syllable structure even when 

previously proposed phonetic heuristics for 

such structure do not clearly point to the cor-

rect diagnosis. 

1 Introduction 

Languages are claimed to differ in how word-

initial consonant clusters are parsed into higher 

level phonological structures. For example, Eng-

lish (Kahn, 1976) and Georgian (Vogt, 1971) are 

claimed to parse initial clusters into complex syl-

lable onsets. In contrast, Berber and Moroccan 

Arabic are claimed to parse initial clusters hete-

rosyllabically, [#C.CV-], because the syllable 

structure of these languages allows at most one 

consonant (simplex onset) per syllable onset 

(Dell & Elmedlaoui, 2002). 

Of direct relevance to these claims are patterns 

of temporal stability in the production of initial 

clusters. In those cases where speech production 

data are available, languages that allow complex 

onsets exhibit patterns of temporal stability that 

differ from languages that allow only syllables 

with simplex syllable onsets.  

These observed temporal differences have 

been quantified in terms of the relative stability 

of intervals as calculated across words beginning 

with one, two and three initial consonants 

(Browman & Goldstein, 1988; Byrd, 1995; 

Honorof & Browman, 1995; Shaw, Gafos, 

Hoole, & Zeroual, 2009). Figure 1 schematizes 

temporal differences between simplex and com-

plex onsets. The figure shows three temporal in-

tervals left-delimited by landmarks in the conso-

nant cluster, the left edge of the cluster, the cen-

ter of the cluster and the right edge of the cluster, 

and right-delimited by a common anchor point. 

 

 
 

Figure 1. Schematic representation of three in-

tervals, left edge to anchor, center to anchor and 

right edge to anchor, delineated by points in an 

initial single consonant or consonant cluster and 

a common anchor (A). The alignment schema on 

the left/right represents experimentally observed 

temporal manifestations of the simplex/complex 

onset parse. Such patterns have been used as 

phonetic heuristics in diagnosing syllable struc-

ture in experimental data. 

 

When clusters are parsed into simplex syllable 

onsets (Figure 1: left), the duration of the right 

edge to anchor interval is unperturbed by the ad-

dition of consonants to the word. Consequently, 

this interval remains stable across #CVX and 
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#CCVX words. In contrast, when clusters are 

parsed into a complex onset (Figure 1: right), the 

duration of the right edge to anchor interval 

shrinks to make room for the addition of a con-

sonant to the syllable. Under this temporal 

alignment schema, the center to anchor interval 

remains more stable across #CVX and #CCVX 

words than both the right edge to anchor interval 

and the left edge to anchor interval.  

Experimental results showing temporal pat-

terns consistent with the schema on the right side 

of Figure 1 include Browman and Goldstein 

(1988), Honorof and Browman (1995), and Ma-

rin and Pouplier (2008) on American English, 

Goldstein, Chitoran, & Selkirk (2007) on Geor-

gian and Hermes, Grice, Muecke and Niemann  

(2008) on Italian. Results showing the temporal 

pattern on the left side of Figure 1 include 

Goldstein et al. (2007) on Berber, Shaw et al. 

(2009) on Moroccan Arabic and Hermes et al. 
(2008) on Italian. 

We briefly review representative quantitative 

results illustrating the different temporal organi-

zations in Figure 1. For a language with complex 

onsets, Browman and Goldstein (1988) show that 

the standard deviation calculated across English 

word sets such as pot~sot~spot~lot~plot~splot is 

smaller for the center to anchor interval, 15.8 ms, 

than for the left edge to anchor interval, 37.7 ms, 

and the right edge to anchor interval, 33.6 ms. In 

contrast, for a simplex onset language, Shaw et 
al. (2009) show that across similar Moroccan 

Arabic word sets, e.g., bati~sbati, the right edge 

to anchor interval has a lower standard deviation, 

14 ms, than the center to anchor interval, 27 ms, 

and the left edge to anchor interval, 77 ms.  

Although the experimental work reviewed 

above shows that stability comparisons among 

the right edge to anchor, center to anchor and left 

edge to anchor intervals can provide good heuris-

tics for testing syllabification hypotheses in ex-

perimental data, such heuristics stated in terms of 

inequalities are known to break down under 

some conditions. For example, simulations with 

a model reported in Shaw et al. (2009) demon-

strated that when the overall variability in the 

intervals is high, the simplex onset parse can 

generate intervals exhibiting stability reversals 

whereby the center to anchor interval is more 

stable than the right/left edge to anchor interval 

(contra the heuristic which states that the right 

edge to anchor interval should be the most stable; 

again, see Figure 1: left). This result indicates the 

frailty of phonetic heuristics in the form of in-

equalities, e.g. a simplex onset parse implies that 

the right edge to anchor interval is more stable 
than the center to anchor interval and the left 

edge to anchor interval. Such heuristics may be 

too coarse or even in some cases misleading in 

distinguishing competing syllabic parses using 

experimental data.  

This paper advances a quantitative method for 

evaluating competing syllable parses that aims to 

improve on previously proposed phonetic heuris-

tics and, by doing so, sharpen the interpretation 

of temporal stability patterns in terms of syllabic 

structure. In mediating between phonological 

theory and experimental data, the computational 

model makes it possible to discover syllabifica-

tion rules from phonetic patterns. The model 

provides a new understanding of languages with 

known syllable structure and the analytical tools 

to deduce syllabification rules in less-studied 

languages. 

2 Model 

The general plan is to simulate data from models 

encoding competing syllabic parses, to quantify 

in the simulated data the pattern of stability in 

the intervals shown in Figure 1, and to evaluate 

the goodness of fit between the pattern of stabili-

ty in the simulated data and the pattern of stabili-

ty in experimental data.  Our modeling paradigm 

capitalizes on structurally revealing temporal 

patterns in experimental data but improves on 

past work by modeling competing syllabic struc-

tures (both simplex and complex onset parses of 

initial clusters) and replacing hypotheses stated 

in the form of inequalities with quantitative in-

dices of goodness of fit between syllable parses 

and experimental data. 

Given a string of consonants and vowels, e.g. 

CCV, the models map the simplex and complex 

onset parse of that string to distinct coordination 

topologies. The coordination topologies reflect 

the temporal relations underlying the segmental 

sequence (Gafos, 2002: p. 316). Differences in 

temporal structure at this level yield the distinct 

temporal alignment patterns schematized in Fig-

ure 1. 

Figure 2 shows how the syllable parse, simp-

lex or complex, determines the relative temporal 

alignment of the segments involved. The boxes 

at the bottom of the figure (V rectangles) 

represent the temporal extent of the syllable nuc-

leus, the vowel, which depends on the syllable 

parse. On a simplex onset parse (Figure 2a) the 

vowel is aligned to the midpoint of the imme-

diately prevocalic consonant regardless of the 
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number of preceding consonants. On a complex 

onset parse (Figure 2b) the vowel is aligned to 

the midpoint of the entire cluster of prevocalic 

consonants. These temporal alignment schemas 

have been proposed to underlie the experimental 

results we reviewed in Section 1. 

The model simulates the temporal organiza-

tion of words with one, two, and sometimes three 

initial consonant clusters on the basis of a proba-

bilistic interpretation of the temporal structure 

encoded in the syllable parse (simplex or com-

plex). In addition, the model has three phonetic 

parameters, k
p
, k

ipi
, and V, which determine, re-

spectively, consonant plateau duration, the dura-

tion between consonant plateaus, and vowel du-

ration. These latter parameters can be set using 

estimates from the phonetic record. 

As summarized in Figure 2, word simulation 

proceeds from the immediately prevocalic con-

sonant, nC  . The timestamp of the release of 

this consonant, 
elR

nC , is drawn from a Gaussian 

distribution. The timestamp of the achievement 

of target of this consonant, 
Tar

nC , is determined 

by subtracting consonant plateau duration, kp
, 

from 
elR

nC and adding an error term. Additional 

prevocalic consonants, e.g. C1 in #C1C2V, are 

determined with reference to the immediately 

preceding consonant. For example, the time-

stamp of the release of 1-nC ,
elR

nC 1- , is deter-

mined by subtracting the inter-plateau interval, 

kipi
, from

Tar

nC and adding a noise term. As noted 

above, the alignment of the vowel relative to the 

prevocalic consonant(s) is dictated by the sylla-

ble parse. 

Once the temporal structure of the input seg-

mental strings was generated, the stability of 

each target interval, the left edge to anchor, cen-

ter to anchor and right edge to anchor interval 

was calculated across words in the simulated da-

ta. For these intervals, the offset of the vowel 

was used as the anchor point.  

In light of past work indicating that phonetic 

heuristics for syllable structure may change as 

the level of variability in the data increases 

(Shaw et al., 2009), we also manipulated the va-

riability of the simulated intervals. We did this 

by varying the standard deviation of the vowel 

offset (from 0 to 70 ms in 15 discrete 5 ms in-

crements such that anchors 1, 2, 3…15 have a 

standard deviation of 0 ms, 5 ms, 10 ms…70 ms, 

respectively). Since the vowel offset serves as an 

anchor in right-delimiting all of the measured 

intervals, increasing the standard deviation of 

this point is one way to increase the level of va-

riability in all of the simulated intervals uniform-

ly. This effectively allows the level of variability 

in simulated data to match the level of variability 

in experimental data. 

 

 
Figure 2: Summary of word simulation in the 

model. Consonant landmarks are generated from 

the release of the immediately prevocalic conso-

nant. The alignment of the vowel is determined 

by the syllable parse (simplex or complex). 

 

To sum up the central idea, the task of evaluat-

ing syllable parses with experimental data has 

been formulated here as the task of fitting ab-

stract coordination topologies to the experimen-

tal data. This fitting can be expressed using two 

types of variables, coordination topologies and 

anchor variability. In the study of biological 

coordination and complex systems more general-

ly, these two variables correspond respectively to 

the so-called essential and non-essential va-

riables describing the behavior of complex sys-

tems (Kugler, Kelso, & Turvey, 1980: p. 13).  

Essential variables specify the qualitative form 

of the system under study. For us, this corres-

ponds to the syllabic parse of the phonological 

string. The fundamental hypothesis entailed in 

positing an abstract phonological organization 

isomorphic to syllable structure is that a syllable 

parse is a macroscopic organization uniform 

across a variegated set of segmental identities, 

lexical statistics and rate conditions, e.g. ‘plea’, 

‘tree’, ‘glee’ are single syllables independent of 

speech rate, frequency or phonotactic probability 

(see Catford 1977: p. 13 on ‘phonological 

form’). 

All of the above factors, however, have left 

imprints on the articulatory patterns registered in 

the experimental data. Crucially, we do not know 

and it may not be possible to predict for any giv-

en stimulus how each such factor or combination 
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of factors has affected the intervals quantified. 

Taken together, then, these and other yet un-

known factors have introduced noise in the inter-

vals that will be measured. Therefore, in formu-

lating the modeling problem of diagnosing sylla-

ble structure in experimental data, we let varia-

bility be one of the non-essential variables mani-

pulated in the fitting process. The anchor offers a 

convenient location for introducing this variabili-

ty into the intervals. In the discussion that fol-

lows, the non-essential variable of anchor index 

will be used to refer to the amount of variability 

introduced into the intervals through the anchor. 

3 Syllable parse evaluation 

Our models allow syllabic parses of the same 

string to be compared directly and evaluated 

quantitatively by determining which parse results 

in a better fit to the data. 

As an index of interval stability, we employ 

the relative standard deviation of the three inter-

vals shown in Figure 1, calculated across sets of 

words with one, two, and sometimes three initial 

consonants. Relative standard deviation, hence-

forth RSD, is calculated by dividing the standard 

deviation of an interval by its mean duration. 

Substantive reasons for using RSD as a depen-

dent variable and not the standard deviation or 

mean duration of the intervals are described, re-

spectively, in Shaw et al. (2009: p. 203) and 

Shaw (2010: p. 111-112). 

Model performance was evaluated on the basis 

of two test statistics: the R2
 statistic and the F 

statistic. The R2
 statistic provides a measure of 

goodness of fit capable of detecting gradient im-

provement (or degradation) in model perfor-

mance as a function of parameter values. The F 

statistic, on the other hand, is used to evaluate 

model performance in the following way. Hits or 

misses for each pairing of simulated RSDs and 

data RSDs will be determined based upon p val-

ues generated from the F statistic. The criterion 

of p < .01 will be interpreted as successful rejec-

tion of the null hypothesis (that the RSD of all 

intervals is equal) and constitute a hit while fail-

ure to reject the null hypothesis constitutes a 

miss. This method of interpreting the F statistic 

provides a direct way to evaluate model perfor-

mance for each run of the simulation. Across 

multiple runs of the simulation, the ratio of hits 

to total runs (hits + misses) provides a hit rate 

which summarizes the performance of a syllable 

parse in matching the experimental data. 

This method of model evaluation has a con-

ceptual antecedent in other work in probabilistic 

grammar. The hit rate as described above plays a 

similar role in model evaluation as the confi-

dence scores employed in Albright and Hayes 

(2003). The probabilistic rules of English past 

tense formation developed in that paper are asso-

ciated with a reliability index. Albright and 

Hayes (2003) refer to this as a raw confidence 

score. The raw confidence score of a rule is the 

likelihood that the rule applies when its envi-

ronment is met. The score is the ratio of the 

number of times that a particular rule applies, 

hits, by the number of times in which the envi-

ronment for the rule is present in the data, the 

rule’s scope. For example, the rule for the Eng-

lish past tense [ɪ] à [ʌ]/ {l,r}___ŋ correctly de-

rives forms such as sprung from spring and flung 
from fling, but makes the wrong prediction, 

brung and not brought, for bring. Of the 4253 

verbs employed in the Albright and Hayes 

(2003) learning set, the environment of the 

spring-sprung rule occurs 9 times and the rule 

applies correctly in 6 of those cases yielding a 

raw confidence score of .667. In contrast, the 

most general rule for the English past tense Æ à 

d / X ____ has a scope identical to the size of the 

data set, 4253, and applies in 4034 cases yielding 

a raw confidence score of .949. In the case at 

hand, that of syllable structure, the hit rate pro-

posed above plays a similar role to that of the 

confidence score. It provides a simple statistic 

summarizing the fit of a syllable parse to data. 

The value of the non-essential variable (anc-

hor index) that maximizes the R2
 statistic is also 

informative in evaluating syllable structure. 

When the syllable parse is correct, then large 

amounts of noise added to the intervals may be 

harmful, pushing the model output away from 

patterns dictated by the essential variable. On the 

other hand, when the syllable parse is wrong, 

then increases in noise may improve model per-

formance by pushing the intervals in the direc-

tion of the correct syllable parse on some trials. 

Since noise is inserted into the intervals through 

the anchor, comparing the anchor indices that 

maximize R2
 may be informative in evaluating 

syllable parses. A lower anchor index indicates a 

better-fitting syllable parse. 

The F and R2
 statistics used to provide quan-

titative evaluation of syllabic structure as de-

scribed above are obtained by plotting RSDs 

measured in the data (x-axis) against correspond-

ing RSDs simulated by the model (y-axis), and 
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fitting a regression line to these coordinates us-

ing the least squares method. A representative 

plot is shown in Figure 3. The x-axis shows the 

RSD of the three intervals of interest for the bul-
ha~sbulha~ksbulha triad as reported in Shaw et 

al. (2009). These are plotted against RSDs simu-

lated by the model given a simplex onset parse 

and different levels of anchor variability. For 

simplicity in presentation, just four of the fifteen 

anchors simulated are shown in the figure. The 

standard deviation of these representative anc-

hors is as follows: anchor 1 = 0 ms, anchor 7 = 

30 ms, anchor 11 = 50 ms, and anchor 14 = 65 

ms.  

Figure 3 shows that R
2
 is highest when the 

simplex onset parse is paired with anchor 7. At 

this level of anchor variability, the simplex onset 

parse provides a perfect fit to the data. At both 

lower (anchor 1) and higher (anchor 11) levels of 

anchor variability, the fit to the data is degraded. 

 

 
Figure 3. Fit between model and data. The RSD 

of three intervals in the data (x-axis) are plotted 

against the RSD of simulated intervals (y-axis) at 

different levels of anchor variability (anchor 1, 

anchor 7, anchor 11, anchor 14). 

 

As illustrated in Figure 3, model performance 

is assessed by calculating the regression line on 

the basis of all three measured intervals at once. 

In doing so, the regression line captures the rela-

tionship between different measured intervals, or 

the pattern of interval stability. Since it is not the 

absolute value of the RSD of an interval but ra-

ther the relations between the RSDs of different 

intervals that is of theoretical interest, this is an 

important aspect of the fitting procedure.  

For simulations reported below, the phonetic 

parameters discussed around Figure 2 are based 

on typical values for the languages under consid-

eration. For American English, the values of 

these parameters used in the simulations were: kp
 

= 45 ms; k
ipi

 = 0 ms, and V = 230 ms. The error 

term, e, associated with each consonantal land-

mark has a standard deviation of 14 ms. For Mo-

roccan Arabic, the parameter values were:  kp
 = 

42 ms; kipi
 = 66 ms, V = 196 ms. The error term 

was set to 20 ms. The results below are based on 

1000 runs of the simulation for each word set. 

4 Results 

The simpex and complex onset parses were eva-

luated against three corpora using the procedure 

described above. The first two corpora are re-

ported in Browman and Goldstein (1988) and 

Shaw et al. (2009) and provide relevant data on 

American English and Moroccan Arabic, respec-

tively. Each of these studies reports articulatory 

data on just one speaker. The third corpus is a 

subset of the Wisconsin X-ray Microbeam 

Speech Production Database (Westbury, 1994). 

The sample analyzed here contains data from 

thirty-three speakers of American English. 

4.1 American English (single speaker) 

Our first American English data set draws from 

work of Browman and Goldstein (1988) which 

provides measurements of the stability of three 

relevant temporal intervals, left edge to anchor, 

right edge to anchor, and center to anchor, calcu-

lated over the following word set: [pɔt], [sɔt], 

[lɔt], [spɔt], [splɔt], [plɔt]. Interval stability was 

reported in terms of the standard deviation of 

each interval calculated across the word set. 

In order to make these results directly compa-

rable to those for Moroccan Arabic to be dis-

cussed in the next section, the relative standard 

deviation (RSD) of the English productions was 

calculated by dividing the standard deviation of 

each interval by the mean of that interval. Al-

though Browman and Goldstein (1988) do not 

report the mean duration of the intervals, they 

provide a figure for each word and a scale (1 cm 

= 135 ms) for the figures allowing the relevant 

intervals to be measured. For each word, the du-

ration of the three intervals of interest was meas-

ured from the figure and the standard deviation 

of the intervals was calculated across words. The 

resulting RSD values are shown in Table 1.  

The RSDs from the data were compared to 

values output from model simulations based on a 

simplex onset parse, e.g., [sp.lɔt]~[p.lɔt]~[lɔt], 
and a complex onset parse, e.g., 

[splɔt]~[plɔt]~[lɔt], of the target strings. One run 

of the simulation generates ten repetitions of 
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each of three word types, i.e., words beginning 

with one, two and three initial consonants. These 

words are generated based on a value for the es-

sential variable (syllable structure) and a range of 

values of the non-essential variable (anchor in-

dex).  

 

pot~sot~spot 
lot~plot~splot 

Interval statistics 

LE-A CC-A RE-A 

mean 267 197 146 

SD 37.7 15.8 33.6 

RSD 14.0% 8.0% 23.0% 

 

Table 1: The mean, standard deviation, and rela-

tive standard deviation of three intervals, left 

edge to anchor (LE-A), center to anchor (CC-A), 

right edge to anchor (RE-A), calculated across 

productions of pot, sot, spot, lot, plot, and splot 

by one speaker of American English. 

 

The hit rate for the complex onset parse was 

95.5% compared to just 57.7% for the simplex 

onset parse. This indicates that the complex onset 

parse provides a better fit to this data than the 

simplex onset parse. Moreover, the anchor index 

that maximizes R2
 for the complex onset parse is 

lower (anchor 3) than for the simplex parse (anc-

hor 12). This further indicates that the complex 

onset parse outperforms the simplex onset parse 

on this data.  

4.2 Moroccan Arabic (single speaker) 

The results above indicate that the complex onset 

parse provides a better fit to the English data 

than the simplex onset parse. This section eva-

luates Moroccan Arabic data against these same 

syllabic parses. The data come from Shaw et al. 

(2009) which reports the RSD of the intervals of 

interest for seven word sets containing dyads or 

triads differing only in the number of initial con-

sonants, e.g. bulha~sbulha~ksbulha. The word 

sets and the reported RSD of the intervals are 

summarized in Table 2. 

For each word set, the model simulated cor-

responding word types. That is, for triads, e.g., 

bulha~sbulha~ksbulha, the model simulated 10 

repetitions of words beginning with one, two, 

and three initial consonants, and, for dyads, e.g. 

tab~ktab, 10 repetitions of words beginning with 

one and two consonants. The model simulated 

word sets under each of the competing syllabic 

parses and evaluated the fit of each syllabic parse 

to the experimental data. 

The resulting hit rates are summarized in Ta-

ble 3. For each of the target word sets, the simp-

lex onset parse shows a clear advantage in fitting 

the data. Hit rates for the simplex parse are above 

75.4% in all cases and the hit rate for the com-

plex onset parse never rises above 00.0%. More-

over, the anchor indices that maximize R2 for the 

simplex onset parse are low, ranging from anchor 

1 to anchor 7. For the complex onset parse, the 

highest variability anchor (anchor 15) provides 

the best fit to the data in all cases. 

 

Word set Interval RSD 

LE-A CC-A RE-A 

bulha~sbulha~ksbulha 24.6% 15.9% 11.2% 

dulha~kdulha~bkdulha 22.2% 17.7% 10.7% 

bal~dbal 20.5 9.7% 5.1% 

tab~ktab 6.8% 5.7% 5.5% 

bati~sbati 20.9% 9.1% 5.8% 

bula~sbula 22.0% 11.1% 7.3% 

lih~glih 18.5% 10.7% 2.7% 

 

Table 2. Relative standard deviation of three in-

tervals, left edge to anchor (LE-A), center to 

anchor (CC-A), right edge to anchor (RE-A) cal-

culated across productions of word sets by one 

native speaker of Moroccan Arabic. 

 

Word set Hit rate 

Simplex Complex 

bulha~sbulha~ksbulha 99.2% 00.0% 

 
dulha~kdulha~bkdulha 

 
bal~dbal 
 

tab~ktab 
 

bati~sbati 
 
bula~sbula 

 

(7) 

99.9% 

(1) 

92.4% 

(3) 

75.4% 

(4) 

84.7% 

(4) 

88.5% 

(4) 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

lih~glih 98.3.0% 

(1) 

00.0% 

(15) 

 

Table 3. Hit rate for each syllable parse when 

evaluated against various Moroccan Arabic word 

sets. The anchor index that maximized R2
 for 

each syllable parse is given in parenthesis. 

 

In sum, the simplex onset parse outperforms 

the complex onset parse on Moroccan Arabic 

data. The opposite result was obtained for Amer-

ican English. For English, it was the complex 

onset parse that achieved a higher hit rate with a 

lower anchor index.  
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Each of the data sets evaluated thus far were 

contributed by a single speaker. In these data the 

patterns of interval stability clearly reveal tem-

poral organization in terms of syllables. To eva-

luate whether the model continues to distinguish 

syllabic parses when phonetic heuristics break 

down, we now turn to a corpus of less controlled 

stimuli from multiple speakers with a high de-

gree of inter-speaker variability. 

4.3 American English (multi-speaker data) 

Under some conditions, stability-based phonetic 

heuristics break down as reliable indicators of 

syllable structure. This is known to occur, for 

example, when the level of overall variability in 

the intervals is high (Shaw et al., 2009).  

In controlled experimental studies, as can be 

seen in Figure 1, neither of the two syllabic 

parses, simplex or complex, has been observed to 

show the left edge to anchor interval as more 

stable than the center to anchor and right edge to 

anchor intervals. At high levels of variability, 

however, the probabilistic model developed in 

our work can produce patterns whereby the left 

edge to anchor interval is more stable than the 

other two intervals. This occurs regardless of the 

syllable parse when the anchor index is high (e.g. 

15), which represents a high degree of variability 

in the intervals (the reason why high interval va-

riability results in this pattern is explained in 

Shaw et al. 2009). Under these conditions of 

high variability, both values of the essential vari-

able (simplex and complex onset parses) gener-

ate a pattern whereby the left edge to anchor in-

terval has a lower RSD than the center to anchor 

interval and the right edge to anchor interval. 

Thus, at this level of variability, stability-based 

phonetic heuristics, i.e., center to anchor stability 

implies a complex onset parse, are rendered inef-

fective in distinguishing syllabic parses. 

When variability leads competing syllable 

parses to the same predictions in terms of inequa-

lities (both models show left edge to anchor sta-

bility), is our modeling paradigm still capable of 

distinguishing syllabic parses? To address this 

question, we need a corpus with the requisite 

level of variability.  

The Wisconsin X-ray Microbeam Speech Pro-

duction Database provides  recordings of a varie-

ty of tasks including production of sentences, 

passages and word lists from fifty-seven speakers 

of American English (Westbury, 1994). Al-

though not all speakers completed all tasks and 

some tokens have missing data which make them 

unusable for this analysis, it remains an archive 

of articulatory data that is extremely impressive 

in size. Within this archive there are various 

near-minimal pairs that can be used to evaluate 

syllable structure using the methods employed 

above. Here we report on thirty-three speakers’ 

productions of the dyad row~grows. Calculating 

interval stability across multiple speaker samples 

of this word dyad is one way to introduce varia-

bility into the intervals and, by doing so, provide 

an interesting test case for our proposed methods.  

The target word row was produced in the sen-

tence Things in a row provide a sense of order. 

This sentence is one of several unrelated sen-

tences included in Task #60 within the X-ray 

microbeam corpus. The word grows was pro-

duced in the sentence That noise problem grows 
more annoying each day, which is included in 

Task #56. Although these target words were pro-

duced in different syntactic frames and occur in 

different phrasal positions, we assume, following 

standard phonological assumptions, that all in-

stances of /gr/ and /r/ were syllabified identically, 

namely, that they are parsed into complex sylla-

ble onsets. To test this assumption, we ask 

whether the models converge on the same result. 

In all respects except for the determination of 

the anchor point, the quantification of the X-ray 

microbeam data followed the same procedure 

described for Electromagnetic Articulometry da-

ta in Shaw et al. (2009). To determine the anchor 

point, we followed past work on English (Brow-

man and Goldstein 1988, Honorof and Browman 

1995) by using an acoustic landmark, the offset 

of voicing in the vowel, as the anchor point right-

delimiting the intervals of interest. This was done 

for the following reason. The target words in this 

case are not matched at the right edge of the syl-

lable (grows ends in s while row ends in a vowel) 

and this makes it difficult to determine a com-

mon articulatory anchor across words. The arti-

culatory landmarks that left-delimit the intervals 

of interest were the same as for the English and 

Arabic data discussed above.  

The duration of the three intervals, left edge to 

anchor, center to anchor and right edge to anc-

hor, were measured for one repetition of each 

word, row and grows, for thirty-three speakers. 

The variation across speakers in the duration of 

these intervals was substantial. As an example, 

the left edge to anchor interval of row ranges 

from 193 ms (Subject 44) to 518 ms (Subject 

53). The mean, standard deviation and relative 

standard deviation of the intervals calculated 

across row and grows are provided in Table 4.  
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 In this data the RSD of the left edge to anchor 

interval is lower than the RSD of both the center 

to anchor and right edge to anchor intervals. 

From the perspective of phonetic heuristics of 

syllable structure, this fact by itself is not par-

ticularly revealing. Both syllabic parses predict-

this should be the case at very high levels of va-

riability. This data set therefore provides a chal-

lenge to phonetic heuristics stated in the form of 

directional inequalities and an appropriate test of 

the quantitative methods developed here. 

 

row~grows 
Interval statistics 

LE-A CC-A RE-A 

mean 302 269 233 

SD 55.3 49.9 52.3 

RSD 18.3% 18.6% 22.5% 

 

Table 4. Mean, standard deviation, and relative 

standard deviation of three intervals, left edge to 

anchor (LE-A), center to anchor (CC-A), right 

edge to anchor (RE-A), calculated across produc-

tions of row and grows by thirty-three speakers 

of American English 

 

Simulations with the simplex and complex on-

set models generated RSD values that were fitted 

to the RSD values of the three intervals of inter-

est in the English row~grows data. On each run, 

the model simulated 10 repetitions of words be-

ginning with one and two consonants. The same 

values of the constants used for the other English 

simulations were employed here as well, and the 

same range of anchor variability was produced 

for each parse. Anchor 1 has a standard deviation 

of zero and the standard deviation of each subse-

quent anchor increases by 5 ms so that anchor 15 

has a standard deviation of 70 ms. Table 5 re-

ports the results of 1000 runs of the simulation.  

 

Word set Hit rate 

Simplex Complex 

row~grows 91.8% 99.0% 

 (11) (6) 

 

Table 5: Hit rate for each syllable parse when 

evaluated against the English dyad row~grows. 

The anchor index that maximized R2
 for each 

syllable parse is given in parenthesis. 

 

The results of the model fitting reveal that the 

complex onset parse provides a superior fit to the 

data. The complex onset parse achieves a higher 

hit rate (99.0% vs. 91.8%) with a less variable 

anchor (anchor 6 vs. anchor 11) than the simplex 

onset parse. This result demonstrates that the 

model can distinguish syllabic parses even in 

noisy data contributed by multiple speakers. 

Since the target words, row and grows, were 

produced in different environments, there are 

potentially a number of interacting factors in-

fluencing the pattern of temporal stability in the 

data. A model incorporating, for example, pro-

sodic structure above the level of the syllable 

may identify interactions between syllable and 

higher levels of prosodic structure. We plan to 

explore models of this sort in future work. It re-

mains an important result of the current model 

that competing parses of a given string can be 

distinguished in the data even at levels of varia-

bility that obscure phonetic heuristics for syllable 

structure. 

5 Conclusion 

There is a growing body of evidence indicating 

that the temporal dimension provides a rich 

source of information revealing phonological 

structure. In the domain syllables, the relation 

between temporal patterns in experimental data 

and qualitative aspects of phonological structure 

has often taken the form of statements expressing 

inequalities, e.g., a complex onset parse implies 

that the center to anchor interval is more stable 
than the right/left edge to anchor intervals. Pho-

netic heuristics of this sort are valid only under 

certain conditions. The models developed in this 

paper generate finer-grained quantitative predic-

tions of syllabic structure based on a probabilis-

tic interpretation of temporal organization. Our 

models make predictions not just about stability 

inequalities but also about the permissible degree 

to which interval stabilities may differ from one 

another under a given syllable parse. Crucially, 

these predictions allow for evaluation of compet-

ing syllable parses even when statements in the 

form of inequalities do not.  

As the phonological literature is replete with 

debates regarding the syllabification of conso-

nant clusters, the tools developed here have im-

mediate application. They allow rigorous evalua-

tion of syllable structure on the basis of experi-

mental data. 
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